
Mudlet GMCP tutorial

Welcome to the wonderful, invisible world of GMCP that’ll make your life a lot easier! GMCP is a data
channel that’s implemented in IRE and other MUDs that provides you with easier access to many types of
new info - like your vitals stats, detailed geographical data as to where you are, what items you have, and
what skills you’ve got!

So let’s get started with it, then. This will be a thorough, newbie-friendly tutorial filled with pictures you
can spy at - and we’ll be using the latest version of the freely-available MUD client, on Windows, Mac and
Linux OS, called Mudlet (get it here), which supports GMCP. Once you’ve got it, make sure that you’ve got
GMCP enabled (Settings General), and you’re all set to start learning!→

Retrieving GMCP data

One of the most useful GMCP features across all IRE games is that with each prompt comes
easily-accessible character vitals (like health, mana) data. This removes the need to make complicated
regex patterns that work with all different kinds of prompts - this solution will take care of that! So let’s
make a prompt trigger that will easily capture our vitals for us.

Start off by clicking on Triggers:

Then Add Item:

Written by Vadim Peretokin

http://vadisystems.com/
http://en.wikipedia.org/wiki/Regex
http://forums.mudlet.org/viewtopic.php?f=5&t=1874&p=7415#p7415
http://forums.mudlet.org/viewtopic.php?f=5&t=1874&p=7415#p7415
http://forums.mudlet.org/viewtopic.php?f=5&t=1874&p=7415#p7415

Add

return isPrompt()

to the first field, and by setting the pattern type to Lua function

We’ve got ourselves a basic prompt trigger now (* - isPrompt() will only work on MUDs that do not say
<No GA> bottom-left window). Let’s add GMCP magic, and use it to capture our current and max
health/mana amounts into variables myhealth and mymaxhealth. Add the code from the box below into
the big white space in your new trigger:

myhealth, mymaxhealth = tonumber(gmcp.Char.Vitals.hp), tonumber(gmcp.Char.Vitals.maxhp)
echo(string.format("[%d/%dh]", myhealth, mymaxhealth))

Should everything be setup alright, our echo will be doing this on every prompt, verifying that our data
capture is working:

Written by Vadim Peretokin

http://vadisystems.com/

How awesome is that? Now you’d probably wonder - how did I know that gmcp.Char.Vitals.hp
corresponds to your current health, and gmcp.Char.Vitals.maxhp to your max health? The trick is simple,
and you’ll see it when you ‘unshroud’ GMCP - by clicking the ‘Debug’ button bottom-left:

Discovering GMCP’s data

Suddenly, your screen will be filled with things like this (clicking Debug again will turn it off, by the way):

The line where it says GMCP event <gmcp.Char.Vitals> tells us that the gmcp.Char.Vitals table was
updated - and because you see it before the prompt, our prompt trigger works and uses the latest
information! You might want to look at all that’s available in gmcp.Char.Vitals besides hp and maxhp - you
can do that by installing the run Lua code alias and doing lua gmcp.Char.Vitals, which will show you all
that’s available in that table.

lua gmcp.Char.Vitals

Written by Vadim Peretokin

http://vadisystems.com/
http://forums.mudlet.org/viewtopic.php?f=8&t=100
http://forums.mudlet.org/viewtopic.php?f=8&t=100
http://forums.mudlet.org/viewtopic.php?f=8&t=100
http://forums.mudlet.org/viewtopic.php?f=8&t=100

Recap

So now you know how to see GMCP events as they’re coming in (by enabling Debug), how to view what
GMCP data you have (by doing lua gmcp), and how to retrieve GMCP data (by accessing gmcp, like
gmcp.Char.Vitals.hp will get you your current health). There are two things left to learn: trigger on GMCP
events and send GMCP requests to the server (which you can use to ask for more information!)

Note: as you might have noticed, Mudlet stores data from incoming GMCP events in the gmcp table, with
the rest of the key name corresponding to the event name - so if you receive a Char.Vitals event from the
server, it’s data will be stored in gmcp.Char.Vitals. Mudlet also raises events whenever you receive GMCP
data - which you’ll read about later on - and the event name has the same format; gmcp.Char.Vitals.

Sending GMCP

Your MUD might support sending commands via GMCP to it - for examples, take a look at this sheet for
IRE games or Aardwolf ’ s wiki . For example, on IRE games, you can ask the server Char.Skills.Get and the
server will tell you what skills you have got - this can come in handy for auto-configuring scripts. In Mudlet,
the function to send a GMCP request is sendGMCP() - so with our example, you’d do:

sendGMCP("Char.Skills.Get")

in a script and get an appropriate Char.Skills.Groups response (as the documentation mentions).

The same Char.Skills.Get request can take additional parameters with it, like the documentation mentions:

sendGMCP([[Char.Skills.Get { "group": "elemancy", "name": "firelash" }]])

(note how I replaced "" with [[]] now - that's because you can't have a " inside a "). You can either use the
example above, or you can also use this:

sendGMCP("Char.Skills.Get "..yajl.to_string({group = "elemancy", name = "firelash"}))

Both have the same effect, but you might find the latter easier to work with as you get better with Lua.

Note: There is currently a known issue on IRE games - a response to a GMCP command will not be sent to
you until you until the next line, if you have MCCP enabled. So to workaround, you might want to use a
blank send() command:

sendGMCP("Char.Skills.Get"); send("\n")

Written by Vadim Peretokin

http://vadisystems.com/
http://www.aardwolf.com/wiki/index.php/Clients/GMCP
http://www.aardwolf.com/wiki/index.php/Clients/GMCP
http://www.aardwolf.com/wiki/index.php/Clients/GMCP
http://www.aardwolf.com/wiki/index.php/Clients/GMCP
http://www.ironrealms.com/gmcp-doc
http://www.ironrealms.com/gmcp-doc

Triggering on GMCP

Lastly, we’ll learn how to trigger on GMCP events - this means doing something right when you got the
event, not on some line/prompt from the MUD. Why would you want to do that? There might be times
when you receive a GMCP event and an input from the line won’t come right away, and you want to act on
the event fast - or you might want to do it for neater system organization.

Remember how you unshrouded GMCP by enabling Debug? As an example, we'll make an event trigger on
the gmcp.Char.Vitals event. Go to Scripts, Add Item, and give the script a name, in this instance,
'my_vitals_function', and paste:

gmcp.Char.Vitals

into the Add User Defined Event Handler field:

And press enter to add it to the list. This will have Mudlet run whatever function we tell it to when that
event comes along - and we'll do that by using the function name as the scripts name, plus defining it in
the script

That's it! Now you can add code into your function to do whatever you'd like when you receive a GMCP
event.

Tip: Mudlet not only raises an event for the exact GMCP event that you receive, but it also raises events
for parts of the name, allowing you to create a handler that deals with more than one event, if you find it
convenient. So when you receive a Char.Skills.Groups event, for example, events gmcp.Char,
gmcp.Char.Skills, and gmcp.Char.Skills.Groups events will be raised, in that order.

Written by Vadim Peretokin

http://vadisystems.com/

Bonus

We can apply our learned GMCP knowledge to create a simple health/mana tracker (this example would
be applicable easier to more IRE games than a health sipper). It'll show us our differences in health/mana
on each prompt! It's very simple for a purpose – so you can easily see how to improve on it and do it.

Start a new prompt trigger, that has the same setup as the sample one we did previously -

return isPrompt()

As a Lua function pattern type. Next, add this as the code:

-- create variables that'll track our previous health, so we can use them to compare
oldhealth = oldhealth or 0
oldmana = oldmana or 0

-- capture our current health & mana
local myhealth, mymana =
 tonumber(gmcp.Char.Vitals.hp), tonumber(gmcp.Char.Vitals.mp)

-- compute the difference with our previous amount
local healthdiff = myhealth - oldhealth
local manadiff = mymana - oldmana

echo(string.format("[%dh/%dm]", healthdiff, manadiff))

-- and lastly, store our current health as old health now, for the next prompt
oldhealth = myhealth
oldmana = mymana

So it all looks like this:

Written by Vadim Peretokin

http://vadisystems.com/

That's it. Now you'll see it working below:

That's it!

We've covered how to retrieve GMCP data, trigger on GMCP events, and ask for more GMCP information,
should covers all of the basics. One last parting tip - not all GMCP modules are activated by default; if
you'd like to enable one (like you'd need to do for Ire.Rift, for example), check out the Mudlet wiki .

Tip: You can also utilize GMCP for things like antitheft! Take a look at some examples posted on Achaean
forums.

Have comments, ran into problems, or want to post a tip? Write below!

Written by Vadim Peretokin

http://vadisystems.com/
http://forums.achaea.com/index.php?showtopic=42118
http://forums.achaea.com/index.php?showtopic=42118
http://wiki.mudlet.org/w/Manual:Scripting#Managing_GMCP_Modules
http://wiki.mudlet.org/w/Manual:Scripting#Managing_GMCP_Modules

	Mudlet GMCP tutorial
	Retrieving GMCP data
	Discovering GMCP’s data
	Recap
	Sending GMCP
	Triggering on GMCP
	Bonus
	We can apply our learned GMCP knowledge to create a simple health/mana tracker (this example would be applicable easier to more IRE games than a health sipper). It'll show us our differences in health/mana on each prompt! It's very simple for a purpose – so you can easily see how to improve on it and do it.
	Start a new prompt trigger, that has the same setup as the sample one we did previously -
	return isPrompt()
	As a Lua function pattern type. Next, add this as the code:
	-- create variables that'll track our previous health, so we can use them to compare
	oldhealth = oldhealth or 0
	oldmana = oldmana or 0
	-- capture our current health & mana
	local myhealth, mymana =
	tonumber(gmcp.Char.Vitals.hp), tonumber(gmcp.Char.Vitals.mp)
	-- compute the difference with our previous amount
	local healthdiff = myhealth - oldhealth
	local manadiff = mymana - oldmana
	echo(string.format("[%dh/%dm]", healthdiff, manadiff))
	-- and lastly, store our current health as old health now, for the next prompt
	oldhealth = myhealth
	oldmana = mymana
	So it all looks like this:
	That's it. Now you'll see it working below:
	That's it!

